Die Kristallstruktur von Ce₄As₃ und Pr₄As₃

Kurze Mitteilung

Von

Wolfhart Rieger* und Erwin Parthé

School of Metallurgy and Materials Science, und Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, USA

(Eingegangen am 14. März 1969)

Der Anti-Th₃P₄-Strukturtyp wurde zuerst bei La₄Ge₃, Pr₄Ge₃ und Seltenen Erd-Antimoniden und Bismuthiden aufgefunden^{1, 2, 3, 4}. Inzwischen ist nun auch ein isotypes Plumbid La₄Pb₃ bekanntgeworden⁵. Um zu überprüfen, ob dieser Typ auch bei den Arseniden gebildet wird, haben wir die Proben Ce₄As₃ und Pr₄As₃ durch Sintern der Reinmetalle bei 800°C hergestellt. Die Pulverdiagramme konnten mit kubischen Einheitszellen indiziert werden.

Ce₄As₃: $a = 9,052 \pm 0,001$ Å, Pr₄As₃: a = 8,984 + 0,004 Å.

Die Auslöschungen: hkl mit $h+k+1 \neq 2n$ und hkl mit $2h+l \neq 4n$ führten zur einzig möglichen Raumgruppe $I\bar{4}3d(T_d^6)$. Mit 16 Ce- oder Pr-Atomen in Punktlage 16c) mit x=0.07 und 12 As-Atomen in Punktlage 12a) ergab sich eine zufriedenstellende Übereinstimmung zwischen beobachteten und berechneten Intensitäten. Der Anti-Th₃P₄-Typ für Ce₄As₃ und Pr₄As₃ ist hiemit sichergestellt.

^{*} Derzeitige Anschrift: Lonza A.G., Sins, Schweiz.

¹ D. Hohnke und E. Parthé, Acta Cryst. 21, 435 (1966).

² R. E. Bodnar und H. Steinfink, Inorg. Chem. 6, 327 (1967).

³ R. J. Gambino, J. Less-Common Metals 12, 344 (1967).

⁴ F. Holtzberg, T. R. McGuire, S. Methfessel und J. C. Suits, J. Appl. Physics 35, 1033 (1964).

⁵ O. D. McMasters, S. D. Soderquist und K. A. Gschneidner, Jr., Amer. Soc. Met., Trans. Quart. **61**, 435 (1968).

Es ist nicht bekannt, ob kleine Metalloidatome in die Anti-Th₃P₄-Struktur eingebaut werden können. Wir haben aber festgestellt, daß das kürzlich veröffentlichte Pulverdiagramm des La₅Ge₃C_{1,5}⁶ einem Anti-Th₃P₄-Typ entspricht. Die Intensitätsabfolge der Linien ist analog der des La₄Ge₃¹, jedoch ist die Gitterkonstante der angeführten ternären Phase etwas kleiner (9,239 Å anstatt 9,356 Å).

Diese Arbeit wurde von der Advanced Research Projects Agency, Office of the Secretary of Defense, unterstützt.

⁶ I. Mayer und I. Shidlovsky, J. Appl. Cryst. 1, 194 (1968).